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Abstract To allow society to treat unequal alternatives distinctly we propose a
natural extension of Approval Voting by relaxing the assumption of neutrality. Accord-
ing to this extension, every alternative receives ex-ante a strictly positive and finite
weight. These weights may differ across alternatives. Given the voting decisions of
every individual (individuals are allowed to vote for, or approve of, as many alter-
natives as they wish to), society elects the alternative for which the product of total
number of votes times exogenous weight is maximal. If the product is maximal for
more than one alternative, a pre-specified tie-breaking rule is applied. Our main result
is an axiomatic characterization of this family of voting procedures.
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130 J. Massó, M. Vorsatz

1 Introduction

Approval Voting (see, Brams and Fishburn (1978)) is perhaps the most well known
voting procedure that has been proposed as an alternative to the Plurality Rule. For
example, in a recent survey Brams and Fishburn (2005) lay out that the United
Nations General Assembly, several scientific institutions (among others the Mathemat-
ical Association of America, the American Mathematical Society, and the American
Statistical Association), and some political parties (i.e., in Pennsylvania) adopted
Approval Voting or had at least some experience with it. According to this rule, every
voter can vote for, or approve of, as many alternatives as s/he wishes to and given the
response profile of individual approvals, society elects the set of alternatives with the
maximal number of votes.

Very recently, it has been looked at Approval Voting from different points of view.
First, several case studies have been carried out. For instance, Laslier (2003) studies
the 1999 elections of the President and the Council of the Society for Social Choice
and Welfare, where Approval Voting was the method being used but voters were
also asked to submit their rankings under the Borda count. Laslier (2006) analyzes
Approval Voting by means of an experiment carried out in six places in France dur-
ing the first round of the presidential election of 2002, in which Jean-Marie Le Pen
came in second, defeating the socialist candidate Lionel Jospin, and thus obtained
the right to compete in the second round against Jacques Chirac. Second, wide the-
oretical research has also been under way. Regenwetter and Tsetlin (2004) compare
Approval Voting with positional voting methods and identify conditions under which
they tend to agree. Vorsatz (2004) shows that, on the domain of dichotomous pref-
erences, Approval Voting coincides with the Borda count. De Sinopoli et al. (2006)
analyze strategic behavior in Approval Voting games. Brams and Sanver (2006) study
Approval Voting under the assumption that voters do not only have preferences on the
set of alternatives but also judgements about their acceptability. Nitzan and Baharad
(2006) study the consequence of modifying Approval Voting by restricting the mini-
mal and maximal number of alternatives that can be voted for, and, finally, Dellis and
Oak (2006) compare Approval Voting with the Plurality Rule in a political competition
model with endogenous candidacy entry.

It is inherent in the definition of Approval Voting that every vote counts the same,
independently which alternative receives it. We believe that this neutrality assumption
is relevant in democratic processes (i.e., presidential elections) where all alterna-
tives should be treated equally, but may not be as natural for group decision making
problems in which the characteristics of the alternatives are objectively different and
society agrees on the desirability to treat unequal alternatives distinctly (i.e., in the
case when alternatives are candidates characteristics such as seniority, age, education,
race, and gender may matter). In some circumstances society may also wish to give
a slight preference to the status quo alternative by using the following modification
of Approval Voting: the status quo is maintained if it is one of the alternatives with
the maximal number of votes; then, alternatives are not treated symmetrically any
more and, consequently, the neutrality axiom is violated. In general, society might be
willing to break ties according to some tie-breaking rule that is applied to the subset
of alternatives with the maximal number of votes. Finally, consider the situation when
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Weighted approval voting 131

alternatives can be identified as points in a multi-dimensional space in such a way that
all preferences are unambiguously monotonic on one of the dimensions (for instance,
the cost of producing each alternative). Then, weights of alternatives may be chosen
according to the corresponding level on this dimension. It is our objective to propose
a generalization of Approval Voting that can be applied to these kind of examples and
present an axiomatic characterization of this new voting procedure.

The generalization we consider, Weighted Approval Voting, is simple and intuitive
at the same time: Assign ex-ante a strictly positive and finite weight to every alterna-
tive. Observe that the weights are potentially different for distinct alternatives. Given
the approvals of every voter (again voters can vote for as many alternatives as they
wish to), society elects the alternative for which the product of total number of votes
times weight is maximal. If the product is maximal for more than one alternative, a
pre-specified tie-breaking is applied. It is defined as follows. Given a complete preor-
der (i.e., a complete, reflexive, and transitive binary relation) on the set of alternatives,
the tie-breaking rule selects, for each non-empty set of alternatives, the subset of alter-
natives that is maximal according to the complete preorder. This voting rule reduces to
Approval Voting when the weights are identical for all alternatives and the complete
preorder has a unique indifference class (i.e., ties are not broken).

We are interested in general voting procedures that could operate in different
voting situations in which the set of voters as well as the set of alternatives might
vary (for instance, different choices have to be made over time). In particular, and
given a universal set of potential voters and a set of conceivable alternatives, a voting
procedure (a family of voting rules) should specify an outcome for every electorate
(the subset of voters that indeed vote) and every set of feasible alternatives (the sub-
set of alternatives that are indeed at stake). Our main result states that the family of
all Weighted Approval Voting is characterized in this setting by means of the fol-
lowing five properties. Consistency in alternatives, which is the analogue of Arrow’s
Choice Axiom and implies that a general election from a set of feasible alternatives
can be reduced to choices among pairs of alternatives only; Consistency in voters,
which requires that if two disjoint electorates elect a common set out of two feasible
alternatives, then exactly this set has to be elected when the two electorates are assem-
bled; Anonymity, which is symmetry among voters; No-Support, which states that one
alternative without any vote is elected, when confronted with another alternative, if
and only if the second alternative does not receive any vote either; and Coherence,
which asks that for every alternative, when confronted with another alternative, there
must exist a situation (with strictly positive votes for both alternatives) at which the
considered alternative is elected (perhaps together with the other one).

Several authors have analyzed Approval Voting axiomatically. Fishburn (1978b)
shows that if the set of alternatives is fixed and the electorate is allowed to vary, then
Approval Voting is characterized by means of consistency in voters, neutrality, ano-
nymity, and disjoint equality (if two voters approve two nonempty and disjoint subsets
of alternatives, then the union of these two sets has to be elected whenever there is
no other voter). Fishburn (1978a) also characterizes Approval Voting by means of
consistency in voters, neutrality, faithfulness (if there is only one voter and this voter
approves at least one alternative, the voting procedure selects all alternatives this voter
supports), and cancellation (if all alternatives receive the same number of votes, all
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132 J. Massó, M. Vorsatz

alternatives are elected). Alós-Ferrer (2006) shows that the latter characterization is
not tight since neutrality follows from consistency in voters, faithfulness, and cancel-
lation. Sertel (1988) presents an alternative definition of Approval Voting that differs
from the original one only in the situation when no alternative receives any vote. He
assumes in this case that no alternative is elected. This, slightly different, voting rule is
then characterized by anonymity, weak unanimity (if the society consists of only one
voter, the voting procedure selects the set of alternatives this voter supports), weak
consistency (this property weakens consistency in voters slightly without changing its
main idea), and strong disjoint equality (disjoint equality is also defined for the case
when some voter does not approve any alternative). A further characterization is due
to Baigent and Xu (1991). They apply the properties of neutrality, strict monotonicity
(if x is elected at a certain response profile and a second response profile is identical to
the first one apart from the fact that x receives now an additional vote, then only x is
elected at the second response profile) and independence of symmetric substitutions.
The latter condition requires that the set of elected alternatives should be the same in
the following two situations: in the first situation, some voter approves, among other
alternatives, x but not y, whereas another voter approves, among other alternatives, y
but not x . The second situation is identical to the first one with the only difference that
the first voter approves now y but not x and the second voter approves now x but not
y. Goodin and List (2006) relate Approval Voting axiomatically to May’s Theorem
by showing that Approval Voting is characterized by anonymity (they define anonym-
ity in a different way than we do, yet, the two properties turn out to be equivalent),
neutrality, and strict monotonicity. Note that any Weighted Approval Voting satisfies
strict monotonicity and independence of symmetric substitutions while it fails to sat-
isfy axioms that have neutrality inherent in its definition such as disjoint equality,
faithfulness, cancellation, and weak unanimity.

The remainder of the paper is organized as follows. In the next section, we introduce
our notation and main definitions. In Sect. 3, we present the five axioms that charac-
terize all Weighted Approval Voting. Afterwards, we prove our theorem. Finally, we
establish the independence of the axioms and conclude with some remarks.

2 Preliminaries

We consider elections in which the set of alternatives and the set of voters may vary.
First, let K be the universal set of conceivable alternatives for election. Generic alter-
natives will be denoted by x, y, and z. The cardinality of K, κ , is finite and greater or
equal to 3 (if the set of conceivable alternatives contains only two alternatives, then the
first axiom, consistency in alternatives, is superfluous in Theorem 1 as it will become
clear from Lemma 3 later on). Since it may happen that not all conceivable alterna-
tives are eligible, we restrict the set of feasible alternatives to be equal to K ⊆ K.
Alternatively, we will denote subsets of alternatives by the capital letters S and T .
Second, we represent the universal set of voters by the set of natural numbers N. We
will consider situations in which the set of voters actually participating in the election,
the electorate N , is a finite subset of the natural numbers. Often we will also use the
capital letters A and B to denote electorates. The cardinalities of N and K are equal
to n ≥ 1 and k ≥ 2, respectively.
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Weighted approval voting 133

For any voter i ∈ N, let Mi ∈ 2K be the set of alternatives i votes for. A profile
M = (Mi )i∈N ∈ (2K)N is a list of all votes. Given a profile M and an electorate N ,
a response profile MN = (Mi )i∈N ∈ (2K)N is the n-tuple of votes coming from the
electorate N at profile M . We say that the response profiles MA and MB , correspond-
ing to the electorates A and B of equal size, are isomorphic if there exists a one-to-one
mapping π : A → B such that for all i ∈ A, Mi = Mπ(i). Given two disjoint elector-
ates A and B and two response profiles MA and MB , denote by MA + MB the response
profile (Mi )i∈A∪B ∈ (2K)A∪B . Finally, given the response profile MN and alternative
x ∈ K, let Gx (MN ) = |{i ∈ N : x ∈ Mi }| be the support of x at MN .

Given a set of feasible alternatives K and an electorate N , a voting rule vK ,N :
(2K)N → 2K \{∅} selects, for all profiles M , a nonempty set of feasible alterna-
tives vK ,N (M) with the property that for all M, M ′ ∈ (2K)N such that MN = M ′

N ,
vK ,N (M) = vK ,N (M ′). This is the reason why, with a slight abuse of notation, we will
write vK (MN ) instead of vK ,N (M). Observe first that, although the empty set can be a
component of response profiles, the images of a given voting rule are nonempty subsets
of feasible alternatives. We exclude the possibility to elect no alternative (even when
all feasible alternatives get zero support), because we want to include the interpreta-
tion of the image as the set of pre-elected alternatives from which an ultimate winning
alternative has still to be determined in a yet to be specified way (i.e., a lottery). Addi-
tionally, we aim at generalizing Approval Voting which, for each response profile,
elects the (always nonempty) subset of feasible alternatives with maximal support.
Second, response profiles may include votes for unfeasible alternatives. These votes
are redundant but this formulation simplifies later on the definition of consistency in
alternatives.

A family of voting rules {vK ,N : (2K)N → 2K \{∅}}K ,N is a set of voting rules, one
for every set of feasible alternatives K and electorate N . It is denoted by v. Given the
family of voting rules v and a particular set of feasible alternatives K , we denote the
subfamily of voting rules {vK ,N : (2K)N → 2K \{∅}}N by vK .

As we have already argued in the Sect. 1, there are meaningful situations in which
not all alternatives are equally important. Thus, it is our objective to eliminate the
neutrality assumption underlying Approval Voting by allowing for the possibility to
discriminate among alternatives keeping the impact of a vote for a given alterna-
tive the same for all voters.1 To define the natural non-neutral extension of Approval
Voting, denote by R++ and Q++ the set of strictly positive real and rational num-
bers, respectively. Let � be a complete preorder on K (i.e., a complete, reflexive, and
transitive binary relation on K). We refer to � as a tie-breaking rule. The asymmetric
and symmetric parts of � are denoted by � and ∼, respectively. Given a vector of
strictly positive weights p = (px )x∈K ∈ R

κ++, the tie-breaking rule � on K, and a
set of feasible alternatives K , we denote by p|K and �

∣
∣
K the restrictions of p and �

1 An alternative approach aims at allowing for different weights for distinct voters maintaining neutrality.
It is also very prospective to analyze the normative foundations of this generalization of Approval Voting
because one can identify a variety of situations where this rule is applied. Examples include voting in the
EU Member Council (the weight of a country is determined by its population size) and management boards
(a vote from the CEO counts usually more than a vote from other board members). To our best knowledge,
this rule has not been studied axiomatically so far.
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on K , respectively; namely, p|K = (px )x∈K ∈ R
k++ and for all x, y ∈ K , x �

∣
∣
K y if

and only if x � y. Obviously, p|K = p and �
∣
∣K =�.

Definition 1 The family of voting rules v is a Weighted Approval Voting if there exists
a vector of weights p = (px )x∈K, with px ∈ R++ for all x ∈ K, and a tie-breaking
rule � such that for all sets of feasible alternatives K and all response profiles MN ,

x ∈ vK (MN ) ⇔ px · Gx (MN ) ≥ py · G y(MN ) for all y ∈ K and
x � y for all y ∈ K such that px · Gx (MN )=py · G y(MN ) > 0.

(1)

The family of Weighted Approval Voting with vector of weights p and tie-breaking
rule � is denoted by v(p,�). Approval Voting, denoted by vA, is the special case of a
Weighted Approval Voting when for all x, y ∈ K, px = py and x ∼ y. Note that the
family of all Weighted Approval Voting contains as a specially interesting subclass
those lexicographic voting rules that always choose a unique alternative (except when
no alternative receives any vote) by applying first Approval Voting (all weights are the
same) and selecting afterwards, among the subset of alternatives with maximal sup-
port, the unique alternative that maximizes a given strict order �. Moreover, observe
that the vector of weights (px )x∈K of any Weighted Approval Voting has one degree
of freedom because multiplying the weights by a strictly positive number does not
have any effect on the result of the election.

Remark 1 For all vectors of weights p and all λ ∈ R++, v(λ·p,�) = v(p,�).

Finally, let v = {vK ,N : (2K)N → 2K \{∅}}K ,N be a family of voting rules and
let K be a set of feasible alternatives. Given a vector of strictly positive weights
pK = (pK

x )x∈K and a tie-breaking rule �K on K , the subfamily of voting rules
vK = {vK ,N : (2K)N → 2K \{∅}}N will be called the Weighted Approval Voting
relative to pK and �K if condition (1) holds when p is replaced by pK and � by �K .

3 Properties and characterization

We present now formally the properties that characterize all Weighted Approval Vot-
ing. Two consistency properties prescribe how the elected set of alternatives varies as
the set of feasible alternatives or the electorate changes.

Consistency in alternatives: The family of voting rules v is consistent in alternatives
if for all sets of feasible alternatives S ⊂ T ⊆ K, all profiles M ∈ (2K)N, and all
electorates N such that vT (MN ) ∩ S = ∅,

vS(MN ) = vT (MN ) ∩ S.

This property means the following. Assume first that a particular set of alternatives
is feasible and society elects a subset of them. If it turns out afterwards that fewer
alternatives are feasible, then the set of elected alternatives is restricted accordingly
(see, Arrow 1959). Consistency in alternatives plays a crucial role in the proof of our
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Weighted approval voting 135

characterization because it establishes the transitivity of the weights and the tie-break-
ing rule. Additionally, it allows us to extend the two alternatives case to any set of
alternatives. For the latter reason we only have to state the other four properties with
respect to two alternatives.

The second consistency property requires that if two disjoint electorates elect some
common alternatives, then exactly these alternatives are elected whenever all voters
within and no voters outside these two electorates participate in the election (see,
Smith (1973)). This property insures the additivity of the votes.

Consistency in voters: The family of voting rules v is consistent in voters if for all
alternatives x, y ∈ K, all profiles M ∈ (2K)N, and all disjoint electorates A, B ⊆ N

such that v{x,y}(MA) ∩ v{x,y}(MB) = ∅,

v{x,y}(MA + MB) = v{x,y}(MA) ∩ v{x,y}(MB).

According to the third property the set of elected alternatives depends only on the
support of the alternatives (see, Fishburn (1978b)). Hence, the weights will be inde-
pendent of the identity of the voters.

Anonymity: The family of voting rules v is anonymous if for all alternatives x, y ∈ K,
all profiles M, M ′ ∈ (2K)N, and all electorates A and B such that Gx (MA) = Gx (M ′

B)

and G y(MA) = G y(M ′
B),

v{x,y}(MA) = v{x,y}(M ′
B).

The fourth axiom refers to response profiles with the property that the support of
at least one of the two feasible alternatives is zero.

No-support: The family of voting rules v satisfies the no-support condition if for
all alternatives x, y ∈ K, all profiles M ∈ (2K)N, and all electorates N such that
Gx (MN ) = 0,

x ∈ v{x,y}(MN ) if and only if G y(MN ) = 0.

The last property, coherence, requires that every alternative x, when confronted
with any alternative y, is elected (perhaps with y) for some profile and some elector-
ate at which both alternatives have a strictly positive support.

Coherence: The family of voting rules v is coherent if for all x ∈ K and all y ∈
K\{x}, there exists a profile M ∈ (2K)N and an electorate N such that Gx (MN ) > 0,
G y(MN ) > 0, and

x ∈ v{x,y}(MN ).

In Theorem 1 we state an axiomatic characterization of all Weighted Approval
Voting based on these five properties.

Theorem 1 The family of voting rules v is consistent in alternatives and voters, anon-
ymous, coherent, and satisfies the no-support condition if and only if v is a Weighted
Approval Voting.
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136 J. Massó, M. Vorsatz

4 Proof of the characterization

We start by proving that, in the case of two feasible alternatives, the relevant infor-
mation is not the absolute support of the alternatives (as it follows directly from
anonymity) but rather their relative support. Afterwards, we prove a monotonicity like

property. First, let Fxy(MN ) = Gx (MN )
G y(MN )

be the relative support of alternative x with

respect to y at the response profile MN , provided that G y(MN ) > 0.

Lemma 1 Assume that the family of voting rules v is consistent in voters and anony-
mous. Then, for all alternatives x, y ∈ K, all profiles M, M ′ ∈ (2K)N, and all elec-
torates A and B such that G y(MA) > 0, G y(M ′

B) > 0, and Fxy(MA) = Fxy(M ′
B),

v{x,y}(MA) = v{x,y}(M ′
B).

Proof Let {x, y} be the set of feasible alternatives and take any two response profiles
MA and M ′

B that satisfy the hypothesis of Lemma 1. Consider two electorates Ā and B̄
of sizes |A|·G y(M ′

B) and |B|·G y(MA), respectively. Let M̄Ā and M̄ ′̄
B

be two response
profiles obtained by replicating G y(M ′

B)-times the response profile MA and G y(MA)-
times the response profile M ′

B , respectively. Namely, the response profile M̄Ā is the
union of G y(M ′

B)-isomorphic copies of MA (denoted by MA1, . . . , MAG y (M ′
B )

) and

the response profile M̄ ′̄
B

is the union of G y(MA)-isomorphic copies of M ′
B (denoted

by M ′
B1

, . . . , M ′
BG y (MA)

), where all electorates At , t = 1, . . . , G y(M ′
B) and all Br ,

r = 1, . . . , G y(MA) are disjoint. Observe that Gx (M̄Ā) = Gx (MA) · G y(M ′
B) and

Gx (M̄ ′̄
B
) = Gx (M ′

B) · G y(MA). By assumption,

Gx (M̄Ā) = Gx (M̄ ′̄
B
). (2)

Moreover, G y(M̄Ā) = G y(MA) ·G y(M ′
B) and G y(M̄ ′̄

B
) = G y(M ′

B) ·G y(MA). Thus,

G y(M̄Ā) = G y(M̄ ′̄
B
). (3)

By anonymity, (2) and (3) imply

v{x,y}(M̄Ā) = v{x,y}(M̄ ′̄
B
). (4)

Also, by anonymity, for all t = 1, . . . , G y(M ′
B) and all r = 1, . . . , G y(MA), v{x,y}

(MAt ) = v{x,y}(MA) and v{x,y}(M ′
Br

) = v{x,y}(M ′
B). Then, by iterating on the

properties of consistency in voters and anonymity,

v{x,y}(M̄Ā) = v{x,y}
⎛

⎝

G y(M ′
B )

∑

t=1

MAt

⎞

⎠ =
G y(M ′

B )
⋂

t=1

v{x,y}(MAt ) = v{x,y}(MA)
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and

v{x,y}(M̄ ′̄
B
) = v{x,y}

⎛

⎝

G y(MA)
∑

r=1

M ′
Br

⎞

⎠ =
G y(MA)

⋂

r=1

v{x,y}(M ′
Br

) = v{x,y}(M ′
B).

By (4), v{x,y}(MA) = v{x,y}(M ′
B). ��

Lemma 2 Assume that the family of voting rules v is consistent in voters, anonymous,
and satisfies the no-support condition. Then, for all alternatives x, y ∈ K, all profiles
M, M ′ ∈ (2K)N, and all electorates A and B such that G y(MA) > 0, G y(M ′

B) > 0,
Fxy(MA) > Fxy(M ′

B), and x ∈ v{x,y}(M ′
B),

v{x,y}(MA) = {x}.

Proof Let {x, y} be the set of feasible alternatives and take any two response pro-
files MA and M ′

B that satisfy the hypothesis of Lemma 2. Consider two electorates
Ā and B̄ of sizes |A| · G y(M ′

B) and |B| · G y(MA), respectively. Let M̄Ā and M̄ ′̄
B

be
the two response profiles obtained by replicating G y(M ′

B)-times the response profile
MA and G y(MA)-times the response profile M ′

B , respectively. Namely, the response
profile M̄Ā is the union of G y(M ′

B)-isomorphic copies of MA and the response profile
M̄ ′̄

B
is the union of G y(MA)-isomorphic copies of M ′

B . By consistency in voters and
anonymity,

v{x,y}(M̄Ā) = v{x,y}(MA) and v{x,y}(M̄ ′̄
B
) = v{x,y}(M ′

B). (5)

Observe that G y(M̄Ā) = G y(MA) · G y(M ′
B) = G y(M̄ ′̄

B
). Moreover, by hypothesis,

Gx (M̄Ā) = Gx (MA) · G y(M ′
B) > G y(MA) · Gx (M ′

B) = Gx (M̄ ′̄
B
).

Now, take two response profiles M̂C and M̂D corresponding to the disjoint elector-
ates C and D, with the properties that G y(M̂D) = G y(M̄ ′̄

B
), Gx (M̂D) = Gx (M̄ ′̄

B
),

G y(M̂C ) = 0, and Gx (M̂C ) = Gx (M̄Ā) − Gx (M̄ ′̄
B
) > 0. By anonymity,

v{x,y}(M̂D) = v{x,y}(M̄ ′̄
B
). (6)

Since Gx (M̄Ā) = Gx (M̂C )+Gx (M̄ ′̄
B
) = Gx (M̂C )+Gx (M̂D), G y(M̄Ā)=G y(M̂C )+

G y(M̂D), and the electorates C and D are disjoint, Gx (M̄Ā) = Gx (M̂C + M̂D) and
G y(M̄Ā) = G y(M̂C + M̂D). By anonymity,

v{x,y}(M̄Ā) = v{x,y}(M̂C + M̂D). (7)

By the no-support condition,
v{x,y}(M̂C ) = {x}.
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138 J. Massó, M. Vorsatz

Since, by hypothesis, x ∈ v{x,y}(M ′
B), conditions (5) and (6) imply x ∈ v{x,y}(M̂D).

Thus,
v{x,y}(M̂C ) ∩ v{x,y}(M̂D) = {x}. (8)

By consistency in voters,

v{x,y}(M̂C + M̂D) = v{x,y}(M̂C ) ∩ v{x,y}(M̂D). (9)

Conditions (7), (8), and (9) imply that v{x,y}(M̄Ā) = {x}. Finally, it follows from (5)
that v{x,y}(MA) = {x}. ��
Lemma 3 Assume that the family of voting rules v is consistent in voters, anonymous,
coherent, and satisfies the no-support condition. Then, for all alternatives x, y ∈ K,
there exist two weights p{x,y}

x , p{x,y}
y ∈ R++ and a tie-breaking rule �{x,y} on {x, y}

such that v{x,y} is the Weighted Approval Voting relative to p{x,y} = (p{x,y}
x , p{x,y}

y )

and �{x,y}.

Proof Let {x, y} be the set of feasible alternatives and take any v that satisfies the
hypothesis of Lemma 3. For all profiles M and all electorates N , if MN is such that
Gx (MN ) = G y(MN ) = 0, then v{x,y}(MN ) = {x, y} by the no-support condition.

Thus, it remains to be shown that there exist two weights p{x,y}
x , p{x,y}

y ∈ R++ and a
tie-breaking rule �{x,y} on {x, y} with the property that for all response profiles MN

satisfying Gx (MN ) + G y(MN ) > 0,

x ∈ v{x,y}(MN ) ⇔ either p{x,y}
x · Gx (MN ) > p{x,y}

y · G y(MN ) or
p{x,y}

x · Gx (MN ) = p{x,y}
y · G y(MN ) and x �{x,y} y.

(10)

To insure that condition (10) holds, we investigate the restrictions that response pro-
files impose on the weights and the tie-breaking rule. Consider any electorate N and
let the response profiles MN and M ′

N be such that Gx (MN ) = G y(M ′
N ) = 1 and

G y(MN ) = Gx (M ′
N ) = 0. By the no-support condition, v{x,y}(MN ) = {x} and

v{x,y}(M ′
N ) = {y}. Then, condition (10) holds for any p{x,y}

x > 0 and p{x,y}
y > 0,

and any tie-breaking rule �{x,y} on {x, y}. To further restrict the weights and the tie-
breaking rule, we have to consider the response profiles in which both alternatives
get at least one vote. Formally, for any electorate N , define MN = {M̃N ∈ (2K)N :
Gx (M̃N ) > 0 and G y(M̃N ) > 0}. We divide the analysis into four cases.

1. Assume that for all electorates B and all M̃B∈MB , v{x,y}(M̃B)={x}. This contra-
dicts coherence, and therefore, this case cannot be.

2. Assume that for all electorates B and all M̃B∈MB , v{x,y}(M̃B)={y}. This contra-
dicts coherence, and therefore, this case cannot be.

3. Assume that there exists an electorate B and a response profile M̃B ∈ MB such
that v{x,y}(M̃B) = {x, y}. Consider any electorate A = B and any response profile
M̂A ∈ MA. Assume at first that Fxy(M̂A) > Fxy(M̃B). Since x ∈ v{x,y}(M̃B) by
assumption, Lemma 2 implies that v{x,y}(M̂A) = {x}. Therefore,

if Fxy(M̂A) > Fxy(M̃B), then v{x,y}(M̂A) = {x}. (11)
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Assume now that v{x,y}(M̂A) = {x}. Since v{x,y}(M̃B) = {x, y}, Lemma 1 implies
that Fxy(M̂A) = Fxy(M̃B). Assume at first that Fxy(M̂A) < Fxy(M̃B). Then, since
y ∈ v{x,y}(M̃B) by assumption, we obtain from Lemma 2 that y ∈ v{x,y}(M̂A) =
{x}. This is a contradiction, and therefore, Fxy(M̂A) > Fxy(M̃B). Hence,

if v{x,y}(M̂A) = {x}, then Fxy(M̂A) > Fxy(M̃B). (12)

We conclude from (11) and (12) that

v{x,y}(M̂A) = {x} if and only if Fxy(M̂A) > Fxy(M̃B). (13)

Symmetrically, we can obtain that

v{x,y}(M̂A) = {y} if and only if Fxy(M̂A) < Fxy(M̃B). (14)

It follows from (13) and (14) that condition (10) holds if and only if p{x,y}
x =

G y(M̃B), p{x,y}
y = Gx (M̃B), and x ∼{x,y} y.

4. Assume that for all electorates B and all M̃B ∈ MB , v{x,y}(M̃B) = {x, y} and
neither Case 1 nor Case 2 holds. Consider the electorate N and a response profile
M̂N with the property that Gx (M̂N ) = G y(M̂N ) = 1. Suppose without loss of

generality that v{x,y}(M̂N ) = {x}. Moreover, set p{x,y}
y ≡ 1.

Observe that by Lemma 1, v{x,y} is a function of the relative support and, by
Lemma 2, this function is monotonic. Moreover, by the assumption defining Case 4,
v{x,y} is a singleton set and, by coherence, there exists a response profile M̄B ∈ MB

with strictly positive support for both alternatives such that v{x,y}(M̄N ) = {y}.
Hence, there exists a real number r ≥ 1 such that for all electorates B and all
response profiles M̃B with the property that G y(M̃B) > Gx (M̃B), at least one of
the following two cases holds:

(a) if Fyx (M̃B) > r , v{x,y}(M̃B) = {y} and if Fyx (M̃B) ≤ r , v{x,y}(M̃B) = {x}
or

(b) if Fyx (M̃B) ≥ r , v{x,y}(M̃B) = {y} and if Fyx (M̃B) < r , v{x,y}(M̃B) = {x}.
Now, if r ∈ Q++, condition (10) holds for p{x,y}

x = r , p{x,y}
y = 1, and x �{x,y} y

in the first case and p{x,y}
x = r , p{x,y}

y = 1, and y �{x,y} x in the second case. If

r ∈ Q++, condition (10) holds for p{x,y}
x = r , p{x,y}

y = 1, and any tie-breaking
rule �{x,y} on {x, y}. ��
In Lemma 3 we have shown that for any pair of alternatives x, y ∈ K, there are two

strictly positive and finite weights, p{x,y}
x and p{x,y}

y , and a tie-breaking rule �{x,y} on
{x, y} such that the subfamily of voting rules v{x,y} is the Weighted Approval Voting
relative to p{x,y} = (p{x,y}

x , p{x,y}
y ) and �{x,y}. Hence, so far we have constructed for

every alternative x ∈ K, κ −1 weights and κ −1 tie-breaking rules that can be applied
when x is confronted with each alternative y = x . We show next that it is possible to
construct a single weight for every alternative.
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Lemma 4 Assume that the family of voting rules v is consistent in alternatives and vot-
ers, anonymous, coherent, and satisfies the no-support condition. Then, there exists a
κ-tuple of weights (pz)z∈K ∈ R

κ++ and κ(κ−1)
2 tie-breaking rules �{x,y}, one for every

pair of different alternatives x, y ∈ K, such that for all alternatives x, y ∈ K, v{x,y}
is the Weighted Approval Voting relative to p{x,y} = (px , py) and �{x,y}.

Proof The proof is done by induction on the set of feasible alternatives. Take any
K ⊂ K of cardinality two. By Lemma 3, there are two weights (pK

x )x∈K ∈ R
2++ and

a tie-breaking rule �K such that vK is the Weighted Approval Voting relative to pK

and �K .
Induction hypothesis: Suppose that given the set of feasible alternatives K ⊂ K of
cardinality k ≥ 2, there exists a k-tuple of weights

(

pK
x

)

x∈K ∈ R
k++ and k(k−1)

2 tie-
breaking rules �{x,y}, one for every pair of different and feasible alternatives x, y ∈ K ,
such that for all x, y ∈ K , v{x,y} is the Weighted Approval Voting relative to p{x,y} =
(pK

x , pK
y ) and �{x,y}.

We have to prove that if the set of feasible alternatives is equal to K ∪{z}, z ∈ K , then
there exists a k + 1-tuple of weights (pK∪{z}

x )x∈K∪{z} ∈ R
k+1++ and (k+1)k

2 tie-breaking
rules �{x,y}, one for every pair of different and feasible alternatives x, y ∈ K ∪ {z},
such that for all x, y ∈ K ∪ {z}, v{x,y} is the Weighted Approval Voting relative to
p{x,y} = (pK∪{z}

x , pK∪{z}
y ) and �{x,y}.

For all alternatives x ∈ K , let pK∪{z}
x = pK

x . Then, for all x, y ∈ K , v{x,y} is

the Weighted Approval Voting relative to p{x,y} = (pK∪{z}
x , pK∪{z}

y ) and �{x,y} by the
induction hypothesis. By Lemma 3, we know that for all x ∈ K , there exist two strictly
positive and finite weights, p{x,z}

x and p{x,z}
z , and a tie-breaking rule �{x,z} such that

v{x,z} is the Weighted Approval Voting relative to p{x,z} = (p{x,z}
x , p{x,z}

z ) and �{x,z}.
Consequently, it remains to determine the weight pK∪{z}

z .
By Remark 1, the weights p{x,z}

x and p{x,z}
z are determined up to proportional

changes; that is, if we multiply both by λ > 0, then the result of the election when
x is confronted with z does not change. Set λ equal to pK∪{z}

x = λ · p{x,z}
x , or, λ =

pK∪{z}
x /p{x,z}

x . Define pK∪{z}
z = λ· p{x,z}

z . Thus, pK∪{z}
z = p{x,z}

z · pK∪{z}
x /p{x,z}

x . With-
out loss of generality we can also define pK∪{z}

x ≡ 1, by setting λ′ = 1/(λ · p{x,z}
x ).

Then, pK∪{z}
z = p{x,z}

z /p{x,z}
x . Since, by Lemma 3, v{x,z} is the Weighted Approval

Voting relative to (p{x,z}
x , p{x,z}

z ) and �{x,z}, we conclude that this subfamily is also
the Weighted Approval Voting relative to p{x,z} = (pK∪{z}

x , pK∪{z}
z ) and �{x,z}.

We still have to show that given any alternative y ∈ K\{x}, v{y,z} is the Weighted
Approval Voting relative to p{y,z} = (pK∪{z}

y , pK∪{z}
z ) and �{y,z}. To do so, we prove

that there exists a µ > 0 such that pK∪{z}
y = µ · p{y,z}

y and pK∪{z}
z = µ · p{y,z}

z . Rewrite

these two equations as pK∪{z}
y · p{y,z}

z = pK∪{z}
z · p{y,z}

y and suppose otherwise. That
is,

δ ≡ pK∪{z}
z · p{y,z}

y − pK∪{z}
y · p{y,z}

z > 0.

Note that we can deal with the case δ < 0 using a symmetric argument. Let p̄z ≡ nz
mz

and p̄y ≡ ny
my

be two rational numbers such that p̄z < pK∪{z}
z , p̄y > pK∪{z}

y , and
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p̄z · p{y,z}
y − p̄y · p{y,z}

z > 0. (15)

Here, ny, my, nz and mz are strictly positive integers. Observe that p̄y and p̄z must
exist, because the set of rational numbers is dense in the set of real numbers. Rewrite
(15) as

p{y,z}
y · (nz · my) > p{y,z}

z · (ny · mz). (16)

Consider now the electorate N of size n ≥ min{ny · nz, ny · mz, nz · my} and let
the response profile MN be such that Gx (MN ) = nz · ny , G y(MN ) = nz · my , and
Gz(MN ) = ny · mz . Since, by Lemma 3, v{y,z} is the Weighted Approval Voting rel-

ative to p{y,z} = (p{y,z}
y , p{y,z}

z ) and �{y,z}, v{y,z}(MN ) = {y} by (16). This implies,
by consistency in alternatives, that z ∈ v{x,y,z}(MN ).

In addition, Gx (MN ) = p̄y · G y(MN ) > pK∪{z}
y · G y(MN ). Since v{x,y} is the

Weighted Approval Voting relative to p{x,y} = (1, pK∪{z}
y ) and �{x,y} by construction,

v{x,y}(MN ) = {x}. This implies, by consistency in alternatives, that y ∈ v{x,y,z}(MN ).
The two conditions z ∈ v{x,y,z}(MN ) and y ∈ v{x,y,z}(MN ) imply that v{x,y,z}

(MN ) = {x}. Hence, v{x,y,z}(MN ) ∩ {x, z} = {x} and, by consistency in alterna-
tives, v{x,z}(MN ) = {x}. Finally, since v{x,z} is the Weighted Approval Voting rel-
ative to p{x,z} = (1, pK∪{z}

z ) and �{x,z} by construction, v{x,z}(MN ) = {x} implies
pK∪{z}

z ·Gz(MN ) ≤ 1·Gx (MN ). But pK∪{z}
z ·Gz(MN ) > p̄z ·Gz(MN ) = nz

mz
·ny ·mz =

Gx (MN ). This is a contradiction.
Hence, there is a (k+1)-tuple of strictly positive and finite weights (pK∪{z}

x )x∈K∪{z}
and (k+1)k

2 binary relations �{x,y} such that for all x, y ∈ K ∪{z}, v{x,y} is the Weighted

Approval Voting relative to p{x,y} = (pK∪{z}
x , pK∪{z}

x ) and �{x,y}. The Lemma follows
finally from the case K ∪ {z} = K and px ≡ pK

x for all x ∈ K. ��
So far, we have constructed the vector of weights p, but we still have not shown

that the κ(κ−1)
2 tie-breaking rules (one for each pair of different alternatives x, y ∈ K)

obtained from the pairwise comparisons in Lemma 3 induce a unique tie-breaking rule
� on K such that for every pair x, y ∈ K, �

∣
∣{x,y} =�{x,y}. This is done next.

Lemma 5 Assume that the family of voting rules v is consistent in alternatives and
voters, anonymous, coherent, and satisfies the no-support condition. Then, there exists
a κ-tuple of weights (pz)z∈K ∈ R

κ++ and a tie-breaking rule � on K such that for
all x, y ∈ K, v{x,y} is the Weighted Approval Voting relative to p{x,y} = (px , py)

and �
∣
∣{x,y}.

Proof Take any v that satisfies the hypothesis of the lemma. By Lemma 4, there exist
a κ-tuple of weights (pz)z∈K ∈ R

κ++ and κ(κ−1)
2 tie-breaking rules �{x,y}, one for

every pair of different alternatives x, y ∈ K, such that v{x,y} is the Weighted Approval
Voting relative to p{x,y} = (px , py) and �{x,y}. Hence, we have to prove that it is
possible to construct a complete, reflexive, and transitive binary relation � on K from
(�{x,y})x,y∈K

x =y
such that for every pair x, y ∈ K, �

∣
∣{x,y} =�{x,y}.

According to Lemma 3, �{x,y} is completely prescribed if and only if both alterna-
tives have a rational weight. Otherwise, the binary relation can be chosen freely. So,
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let K be the set of all alternatives that have a rational weight; that is, x ∈ K if and
only if px ∈ Q++. We show that the k(k−1)

2 tie-breaking rules (�{x,y})x,y∈K
x =y

induce a

unique complete, reflexive, and transitive binary relation �K on K with the property
that for all x, y ∈ K , �K

∣
∣{x,y} =�{x,y}.

Define the binary relation �K on K as follows: for every pair of different alternatives
x, y ∈ K , set x �K y if and only if x �{x,y} y. Obviously, �K is complete
and reflexive. We have to show that �K is transitive as well. Suppose otherwise;
that is, there exists a triple x, y, z ∈ K such that x �{x,y} y, y �{y,z} z, and
z �{x,z} x . For all w ∈ {x, y, z}, define pw = nw

mw
, where nw and mw are strictly

positive integers. Now, consider any response profile MN with the property that
Gx (MN ) = ny · mx · nz , G y(MN ) = nx · my · nz , and Gz(MN ) = nx · mz ·
ny . Then, px · Gx (MN ) = py · G y(MN ) = pz · Gz(MN ) = nx · ny · nz . Since
x �{x,y} y by assumption, x ∈ v{x,y}(MN ). It follows from consistency in alterna-
tives that x ∈ v{x,y,z}(MN ) whenever y ∈ v{x,y,z}(MN ). Moreover, since y �{y,z} z
by assumption, y ∈ v{x,y}(MN ). It follows from consistency in alternatives that
y ∈ v{x,y,z}(MN ) whenever z ∈ v{x,y,z}(MN ). Both results together imply that
v{x,y,z}(MN ) ∈ {{x}, {x, y}, {x, y, z}}. Hence, x ∈ v{x,y,z}(MN ) ∩ {x, z} and it
follows from consistency in alternatives that x ∈ v{x,z}(MN ). But, z �{x,z} x and
px · Gx (MN ) = pz · Gz(MN ) imply that v{x,z}(MN ) = {z}, a contradiction. Hence,
the k(k−1)

2 tie-breaking rules (�{x,y})x,y∈K
x =y

induce a complete, reflexive, and tran-

sitive binary relation �K on K with the property that for every pair x, y ∈ K,
�K

∣
∣{x,y} =�{x,y}.

Finally, observe that �K induces a reflexive and transitive (but not complete) binary
relation �∗ on K. However, according to Szpilrajn (1930), any reflexive and transitive
binary relation can be completed in a transitive way. ��

In the next and last step of the proof, we apply consistency in alternatives to gen-
eralize Lemma 5 to all sets of feasible alternatives.

Proof of Theorem 1 It is easy to check that any Weighted Approval Voting satisfies
consistency in alternatives and voters, anonymity, the no-support condition, and coher-
ence. To prove the other implication let v be a family of voting rules that satisfies consis-
tency in alternatives and voters, anonymity, the no-support condition, and coherence.
We show that the κ-tuple of strictly positive and finite weights (px )x∈K constructed
in Lemma 4 and the tie-breaking rule � on K identified in Lemma 5 are such that for
all sets of feasible alternatives K and all response profiles MN ,

x ∈ vK (MN ) ⇔ px · Gx (MN ) ≥ py · G y(MN ) for all y ∈ K and
x � y for all y ∈ K satisfying px · Gx (MN ) = py · G y(MN )>0.

Assume that x ∈ vK (MN ). Then, by consistency in alternatives, x ∈ v{x,y}(MN )

for all y ∈ K\{x}. By Lemma 5, v{x,y} is the Weighted Approval Voting relative to
p{x,y} = (px , py) and �

∣
∣{x,y}. Hence, px · Gx (MN ) ≥ py · G y(MN ) for all y ∈ K ,

and x � y for all y ∈ K satisfying px · Gx (MN ) = py · G y(MN ) > 0.
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Assume that px · Gx (MN ) ≥ py · G y(MN ) for all y ∈ K , and x � y for all
y ∈ K satisfying px · Gx (MN ) = py · G y(MN ) > 0. Then, for all y ∈ K \ {x}, x ∈
v{x,y}(MN ) because, by Lemma 5, v{x,y} is the Weighted Approval Voting relative to
p{x,y} = (px , py) and �

∣
∣{x,y}. If there is some z = x such that z ∈ vK (MN ), then

vK (MN ) ∩ {x, z} = ∅. Hence, v{x,z}(MN ) = vK (MN ) ∩ {x, z} by consistency in
alternatives. Since, by Lemma 5, v{x,z} is the Weighted Approval Voting relative to
p{x,z} = (px , pz) and �

∣
∣{x,z}, x ∈ v{x,z}(MN ). Hence, x ∈ vK (MN ). If there does

not exist any alternative z = x such that z ∈ vK (MN ), then x ∈ vK (MN ) as well
because the set vK (MN ) cannot be empty. Finally, observe that if the response profile
MN is such that Gx (MN ) = 0 for all x ∈ K , then vK (MN ) = K by the no-support
condition. This concludes the proof. ��

5 Final remarks

We show next, with the help of five examples, the independence of the proper-
ties used in Theorem 1. Finally, we argue that additional axioms are needed if the
aim is to characterize, for a fixed electorate or a fixed set of feasible alternatives,
the class of all Weighted Approval Voting without the corresponding consistency
property.

5.1 Independence of the axioms

Consistency in alternatives: Fix x ∈ K. Let the family of voting rules v be such
that for all sets of feasible alternatives K of size two, all profiles M , and all elec-
torates N , vK (MN ) = vK

A (MN ). Otherwise, apply the Weighted Approval Vot-
ing with weights px = 2 and py = 1 for all y = x . Assume that ties are not
broken. This family satisfies consistency in voters, anonymity, the no-support
condition, and coherence. The following example shows that it is not consistent in
alternatives. Let K = {x, y, z} and suppose that N = {i, j}. If Mi = M j = K, then
v{x,y}(Mi + M j ) = {x, y} and v{x,y,z}(Mi + M j ) = {x}. Consistency in alternatives
would imply that v{x,y}(Mi + M j ) = v{x,y,z}(Mi + M j ) ∩ {x, y} = {x}. Hence, v

does not satisfy consistency in alternatives.

Consistency in voters: Let the family of voting rules v be such that for all sets of
feasible alternatives K , all profiles M , and all electorates N such that Gx (MN ) > 1
for some x ∈ K , vK (MN ) = vK

A (MN ). Otherwise, apply the Weighted Approval
Voting with weights px = 2 and py = 1 for all y = x . Assume that ties are not
broken. This family satisfies consistency in alternatives, anonymity, the no-support
condition, and coherence. The following example shows that it is not consistent in
voters. Let K = {x, y, z} and suppose that N = {i, j}. If Mi = M j = {x, y}, then
v{x,y}(Mi ) = v{x,y}(M j ) = {x} and v{x,y}(Mi + M j ) = {x, y}. Consistency in voters
would imply that v{x,y}(Mi + M j ) = v{x,y}(Mi ) ∩ v{x,y}(M j ) = {x}. Hence, v does
not satisfy consistency in voters.

Anonymity: Assign to each voter i ∈ N a strictly positive and finite number qi in such
a way that qi = q j for some pair i, j ∈ N. Now, let the family of voting rules v
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be such that for all sets of feasible alternatives K , all profiles M , and all electorates
N , x ∈ vK (MN ) if and only if

∑

i∈N :x∈Mi
qi ≥ ∑

i∈N :y∈Mi
qi for all y ∈ K . This

family satisfies consistency in alternatives and voters, the no-support condition, and
coherence. The following example shows that it is not anonymous. Let K = {x, y, z}
and suppose that N = {i, j}. Moreover, let qi = 2 and q j = 1. If Mi = M ′

j = {x} and

M ′
i = M j = {y}, then v{x,y}(Mi + M j ) = {x} and v{x,y}(M ′

i + M ′
j ) = {y}. Hence, v

does not satisfy anonymity.

No-support: Let the family of voting rules v be such that for all sets of feasible
alternatives K , all profiles M , and all electorates N , x ∈ vK (MN ) if and only if
Gx (MN ) ≤ G y(MN ) for all y ∈ K . This family satisfies consistency in alternatives
and voters, anonymity, and coherence. The following example shows that it does not
satisfy the no-support condition. Let K = {x, y, z} and suppose that N = {i, j}. If
Mi = M j = {y}, then v{x,y}(Mi + M j ) = {x}. Hence, v does not satisfy the no-sup-
port condition.

Coherence: Let η : K → {1, . . . , κ} be any one-to-one mapping that assigns to every
x ∈ K a positive integer between 1 and κ . Given η, let the family of voting rules v be
such that for all sets of feasible alternatives K , all profiles M , and all electorates N ,
vK (MN ) = {y ∈ K : G y(MN ) > 0 and η(y) < η(z) for all z ∈ K s.t. Gz(MN ) >

0}. If no alternative gets any vote, then vK (MN ) = K . This family satisfies consistency
in alternatives and voters, anonymity, and the no-support condition. The following
example shows that it does not satisfy coherence. Let K = {x, y, z} and define η to be
such that η(x) = 1 and η(y) = 2. Then, for all profiles M and all electorates N such
that Gx (MN ) > 0 and G y(MN ) > 0, v{x,y}(MN ) = {x}. Hence, v does not satisfy
coherence.

5.2 Consistency properties

An additional point, also related to the independence of the properties, regards the
question whether it is possible to obtain a similar characterization of all Weighted
Approval Voting for a given electorate (or a given set of feasible alternatives); that
is, if the electorate (or the set of feasible alternatives) is fixed at N (or at K ) and the
corresponding consistency property is dropped, is the class of all Weighted Approval
Voting characterized by the remaining four properties? The following two examples
show that this is not the case.

Example 1 Suppose that the electorate is equal to N = {1, 2}. Let the family of voting
rules v̂ = {v̂K ,N : (2K)N → 2K \{∅}}K be such that for all sets of feasible alterna-
tives K ⊆ K and all response profiles MN ∈ (2K)N such that Gr (MN ) > 0 for some
r ∈ K, v̂K (MN ) = {r ∈ K : Gr (MN ) > 0}. If no alternatives receives any vote, the
set K is elected. This family of voting rules satisfies consistency in alternatives, ano-
nymity, coherence, and the no-support condition. Yet, v̂ is not a Weighted Approval
Voting because there does not exist a vector of weights p = (px )x∈K ∈ R

κ++ and
a tie-breaking rule � on K such that for all sets of feasible alternatives K and all
response profiles MN ,
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r ∈ v̂K (MN ) ⇔ pr · Gr (MN ) ≥ ps · Gs(MN ) for all s ∈ K and
r � s for all s ∈ K such that pr · Gr (MN ) = ps · Gs(MN ) > 0.

(17)

To see it, let K = {x, y, z} and consider two response profiles MN and M ′
N with the

property that Gx (MN ) = G y(M ′
N ) = 1 and Gx (M ′

N ) = G y(MN ) = 2. Observe that,
by definition of v̂, v̂{x,y}(MN ) = v̂{x,y}(M ′

N ) = {x, y}. Let (px , py, pz) ∈ R
3++ be an

arbitrary vector of weights. Condition (17) implies simultaneously that px = 2· py and
2 · px = py . Hence, px = py = 0. Observe that this argument works even if we admit
zero weights. To see that, take any response profile M ′′

N which satisfies Gx (M ′′
N ) > 0

and G y(M ′′
N ) = 0. Since v̂K (M ′′

N ) = {x} by definition of v̂K , condition (17) implies
that px > 0. This contradicts px = 0. ��
Example 2 Suppose that the set of feasible alternatives is equal to K = {x, y, z}. Let
the family of voting rules ṽ = {ṽK ,N : (2K )N → 2K \{∅}}N be such that for all profiles
M ∈ (2K )N and all electorates N , (a) if vK

A (MN ) = {x, y}, then ṽK (MN ) = {x}, (b) if
vK

A (MN ) = {y, z}, then ṽK (MN ) = {y}, (c) if vK
A (MN ) = {x, z}, then ṽK (MN ) = {z},

and (d) ṽK (MN ) = vK
A (MN ) in all other situations. This family of voting rules is con-

sistent in voters (if two disjoint electorates elect a common set of alternatives exactly
those alternatives are elected when the two electorates are assembled), anonymous (the
voting rule depends only on the amount of votes every alternative receives), coher-
ent (given an alternative, there is a situation in which all alternatives have strictly
positive support and the considered alternative belongs to the image), and satisfies the
no-support condition (if an alternative does not get any vote it is selected if and only if
all alternatives have zero support). Yet, ṽ is not a Weighted Approval Voting because
the cycle induces a non-transitive tie-breaking rule. To see it, assume otherwise, and
let p = (px , py, pz) ∈ R

3++ and � be the vector of weights and the complete preoder
associated to ṽ. Then, (a) and (d) imply that px = py and x � y, (b) and (d) imply
that py = pz and y � z, and (c) and (d) imply that pz = px and z � x . Consequently,
the tie-breaking rule is not transitive. ��
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